Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present the multiwavelength and environmental properties of 37 variability-selected active galactic nuclei (AGNs), including 30 low-luminosity AGNs (LLAGNs), using a high cadence time-domain survey (All-Sky Automated Survey for SuperNovae) from a spectroscopic sample of 1218 nearby bright galaxies. We find that high-cadence time-domain surveys uniquely select LLAGNs that do not necessarily satisfy other AGN selection methods, such as X-ray, mid-IR, or BPT methods. In our sample, 3% of them pass the mid-infrared color based AGN selection, 18% pass the X-ray luminosity based AGN selection, and 60% pass the BPT selection. This result is supported by two other LLAGN samples from high-cadence time-domain surveys of the Transiting Exoplanet Survey Satellite and Palomar Transient Factory, suggesting that the variability selection method from well-sampled light curves can find AGNs that may not be discovered otherwise. These AGNs can have moderate to small variability amplitudes from the accretion disk, but many of them lack strong corona, emission lines from the central engine, or accretion power to dominate the mid-IR emission. The X-ray spectra of a subsample of bright sources are consistent with a power-law model. Upon inspecting the environments of our sample, we find that LLAGNs are more common in denser environments of galaxy clusters in contrast with the trend established in the literature for luminous AGNs at low redshifts, which is broadly consistent with our analysis result for luminous AGNs limited by a smaller sample size. This contrast in environmental properties between LLAGN and luminous AGNs suggests that LLAGNs may have different trigger mechanisms.more » « lessFree, publicly-accessible full text available July 2, 2026
- 
            Context.Variability is a ubiquitous feature of active galactic nuclei (AGNs), and the characterisation of this variability is crucial to constraining its physical mechanism and proper applications in AGN studies. The advent of all-sky and high-cadence optical surveys allows more accurate measurements of AGN variability down to short timescales as well as direct comparisons with X-ray variability from the same sample of sources. Aims.We aim to analyse the optical power spectral density (PSD) of AGNs with measured X-ray PSDs. Methods.We used light curves from the All-Sky Automated Survey for SuperNovae (ASAS-SN) and the Transiting Exoplanet Survey Satellite (TESS) and used the Lomb-Scargle periodogram to obtain PSDs. The joint optical PSD is measured over up to six orders of magnitude in frequency space on timescales of minutes to a decade. We fitted either a damped random walk (DRW) or a broken power law (BPL) model to constrain the PSD model and break frequency. Results.We find a set of break frequencies (≲10−2day−1) from DRW and BPL fits that generally confirm previously reported correlations between break frequencies and the black hole mass. In addition, we find a second set of break frequencies at higher frequencies (> 10−2day−1). We observe a potential weak correlation between the high-frequency breaks with the X-ray break frequencies and the black hole mass. We further explored the dependence of the correlations on other AGN parameters, finding that adding X-ray, optical, or bolometric luminosity as the third correlation parameter can substantially improve the correlation significances. The newly identified high-frequency optical breaks can constrain different aspects of the physics of AGNs.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Abstract We present an optical variability analysis and comparison of the samples of Seyfert 1 (Sy1) and Seyfert 2 (Sy2) galaxies, selected from the Swift 9 month BAT catalog, using the light curves from Transiting Exoplanet Survey Satellite (TESS) and All-Sky Automated Survey for SuperNovae (ASAS-SN). We measured the normalized excess variance of TESS and ASAS-SN light curves for each target and performed a Kolmogorov–Smirnov test between the two samples, where our results showed significant differences. This is consistent with predictions from the unification model, where Seyfert 2s are obscured by the larger scale dust torus and their variability is suppressed. This variability difference is independent of the luminosity, Eddington ratio, or black hole mass, further supporting geometrical unification models. We searched the dependence of the normalized excess variance of Sy1s on absolute magnitudes, Eddington ratio, and black hole mass, where our results are consistent with relations found in the literature. Finally, a small subsample of changing-look (CL) active galactic nuclei (AGNs) that transitioned during the time frame of the ASAS-SN light curves, with their variability amplitudes changing according to the classification, have larger variability as type 1s and smaller as 2s. The change of variability amplitudes can be used to better pinpoint when the type transition occurred. The consistency trend of the variability amplitude differences between Sy1s and Sy2s and between CL AGNs in 1 or 2 stages suggests that variability can be a key factor in shedding light on the CL AGN or the dichotomy between Sy1 or Sy2 populations.more » « lessFree, publicly-accessible full text available May 22, 2026
- 
            Abstract The X-ray emission from active galactic nuclei is believed to come from a combination of inverse Compton scattering of photons from the accretion disk and reprocessing of the direct X-ray emission by reflection. We present hard (10–80 keV) and soft (0.5–8 keV) X-ray monitoring of a gravitationally lensed quasar RX J1131−1231 (hereafter RXJ1131) with NuSTAR, Swift, and XMM-Newton between 2016 June 10 and 2020 November 30. Comparing the amplitude of quasar microlensing variability at the hard and soft bands allows a size comparison, where larger sources lead to smaller microlensing variability. During the period between 2018 June 6 and 2020 November 30, where both the hard and soft light curves are available, the hard and soft bands varied by factors of 3.7 and 5.5, respectively, with rms variability of 0.40 ± 0.05 and 0.57 ± 0.02. Both the variability amplitude and rms are moderately smaller for the hard X-ray emission, indicating that the hard X-ray emission is moderately larger than the soft X-ray emission region. We found the reflection fraction from seven joint hard and soft X-ray monitoring epochs is effectively consistent with a constant with low significance variability. After decomposing the total X-ray flux into direct and reprocessed components, we find a smaller variability amplitude for the reprocessed flux compared to the direct emission. The power-law cutoff energy is constrained at keV, which positions the system in the allowable parameter space due to the pair production limit.more » « less
- 
            ABSTRACT We used Transiting Exoplanet Survey Satellite (TESS) data to identify 29 candidate active galactic nuclei (AGNs) through their optical variability. The high-cadence, high-precision TESS light curves present an opportunity for the identification of AGNs, including those not selected through other methods. Of the candidates, we found that 18 have either previously been identified as AGNs in the literature or could have been selected based on emission-line diagnostics, mid-IR colours, or X-ray luminosity. AGNs in low-mass galaxies offer a unique window into supermassive black hole and galaxy co-evolution and 8 of the 29 candidates have estimated black hole masses ≲ 106 M⊙. The low-mass galaxies NGC 4395 and NGC 4449 are two of our five ‘high-confidence’ candidates. Since our initial sample largely draws from just nine TESS sectors, we expect to identify at least ∼45 more candidates in the TESS primary and extended mission data sets, of which ∼60 per cent will be new AGNs and ∼20 per cent will be in low-mass galaxies.more » « less
- 
            Abstract Low luminosity active galactic nuclei (LLAGN) probe accretion physics in the low Eddington regime can provide additional clues about galaxy evolution. AGN variability is ubiquitous and thus provides a reliable tool for finding AGN. We analyze the All-Sky Automated Survey for SuperNovae light curves of 1218 galaxies withg< 14 mag and Sloan Digital Sky Survey spectra in search of AGN. We find 37 objects that are both variable and have AGN-like structure functions, which is about 3% of the sample. The majority of the variability selected AGN are LLAGN with Eddington ratios ranging from 10−4to 10−2. We thus estimate the fraction of LLAGN in the population of galaxies as 2% down to a median Eddington ratio of 2 × 10−3. Combining the BPT line ratio AGN diagnostics and the broad-line AGN, up to ∼60% of the AGN candidates are confirmed spectroscopically. The BPT diagnostics also classified 10%–30% of the candidates as star-forming galaxies rather than AGN.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
